

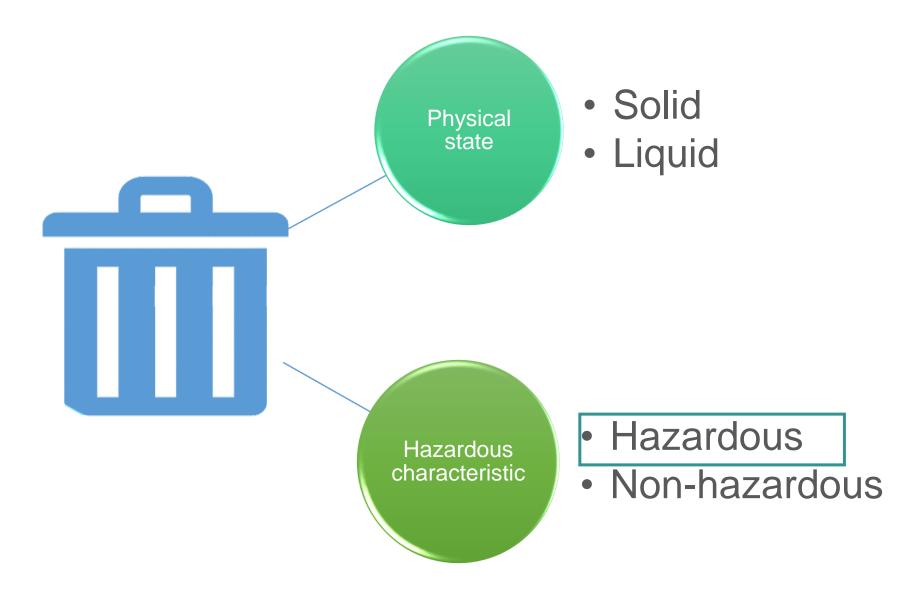
Reduction of Unintentionally Produced Persistent Organic Pollutants (UPOPs) emissions by improving waste management practices at landfills

Waste categories and impact potential

GEF Project ID: 5558 – Component 2 - Development and Implementation of a Sustainable Management Mechanism for POPs in the Caribbean

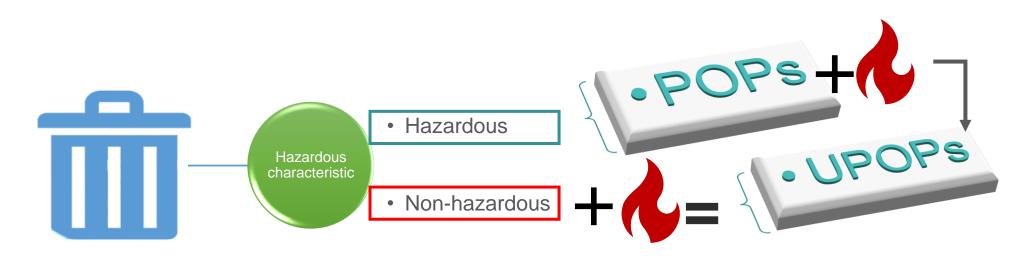
UN CO environment United Nations Environment Programme

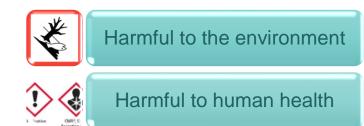
Resources & Waste


Advisory Group

Understanding waste categories and their impact potential

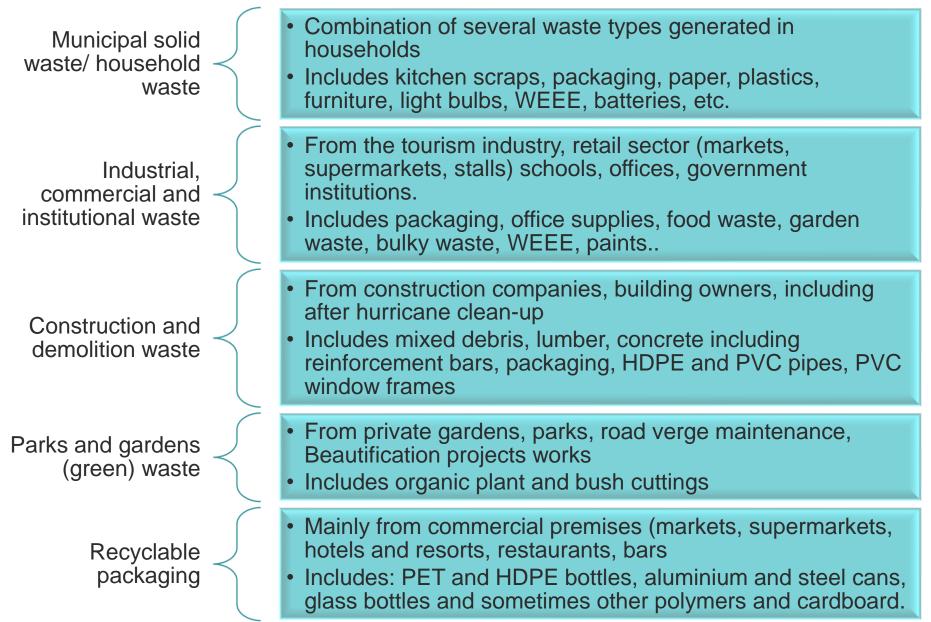
Classification by <u>characteristics</u>


Classification by <u>characteristics</u>


 Waste is deemed hazardous based on their chemical and physical properties and/or their effect on human and environmental health

Hazardous waste Explosive Oxidizing Flammable A Co Toxic (all Corrosive **6**% × Harmful to the environment Harmful to human health Other...

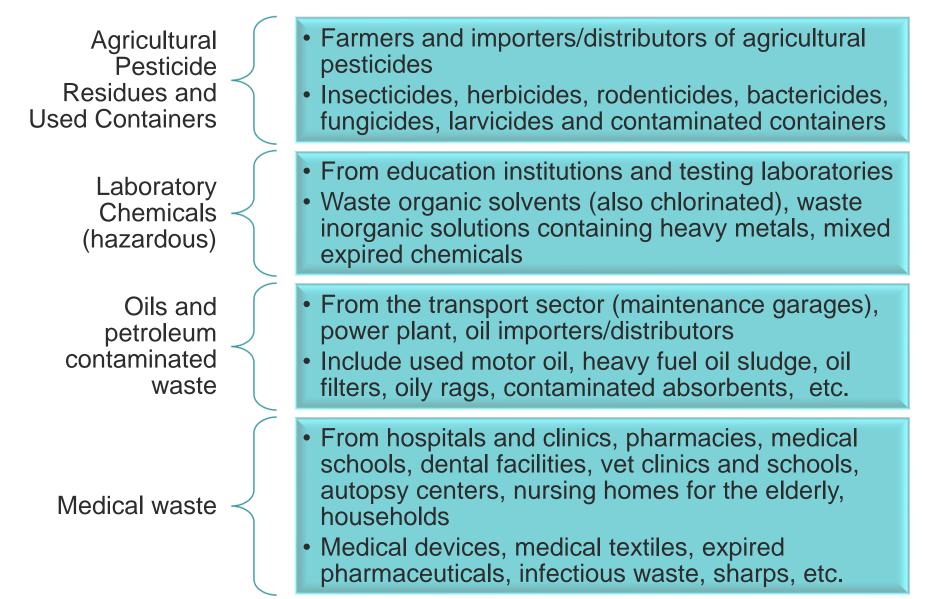
Classification by <u>characteristics</u>



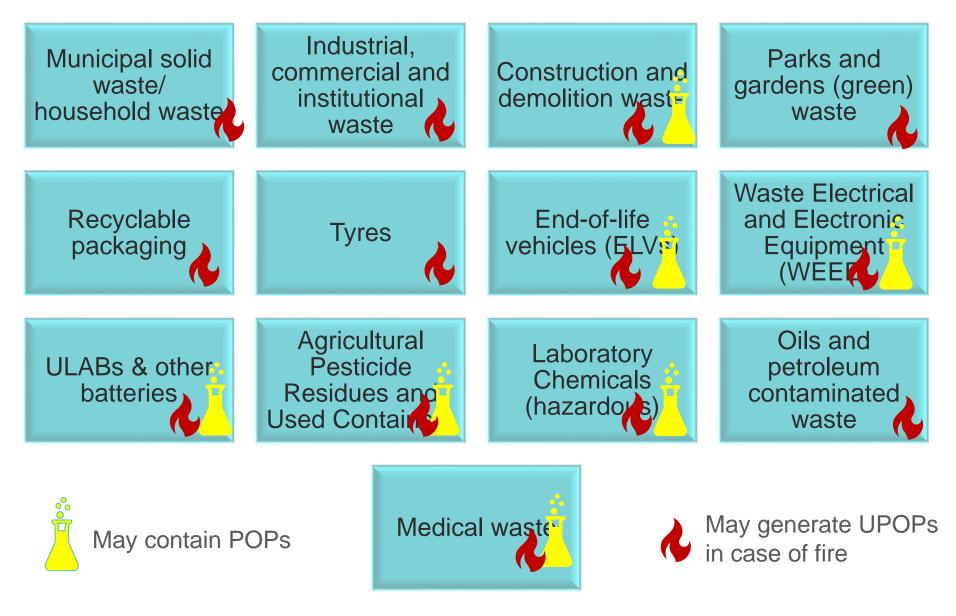
- Hazardous waste may readily contain Persistent Organic Pollutants (POPs).
- Both hazardous and non-hazardous waste may generate Unintentional POPs (UPOPs) in case of fire.
- POPs and UPOPs pose significant threats to human and environmental health

Waste streams – description 1/3

Classification by source


Waste streams – description 2/3

Classification by source


Rubber tyres, different sizes; From vehicle maintenance facilities, transportation **Tyres** providers Private owners, public transportation companies, public/privately owned machinery End-of-life vehicles (ELVs) Derelict cars, motorcycles, vans, lorries, trucks, buses, tractors, etc. From household, commercial and institutional Waste locations Electrical and Household appliances – all sizes, IT and Electronic telecom equipment, lighting fixtures, electric Equipment powered tools, toys, sports equipment, (WEEE) medical devices (non-implanted), etc. Vehicle batteries from transport sector **ULABs & other** Ni-Cd, Li-Ion batteries from electronic devices batteries

Waste streams – description 3/3

Classification by source

Classification by source

Understanding waste categories and their impact potential

Impact potential of waste streams on environment and human health

Hazardous, POPs containing and uPOPs producing potential

- 2012 Battery recycling (1st), lead smelting (2nd) and dumpsites(5th) among the top toxic pollution sources worldwide. In 2016 the situation is ~ unchanged (Pure Earth, formerly Blacksmith Institute and the Green Cross)
- Lead and chromium are found in almost a third of the identified dumpsites: ~ 370,000 to 1.2 million Disability-Adjusted-Life-Years = number of years lost due to ill-health, disability or early death
- Dumpsites are a more serious health risk than malaria for at least the 1.6 billion people of India, Indonesia and Philippines
- ~ 1/5 of the global cancer incidence is associated with environmental exposures. Number is disproportionately higher in developing countries.

No data readily available on the impacts of waste management in the Caribbean region.

Wastes received and potential impacts

Landfills receive household waste, medical waste, used oil, contaminated pesticides containers, obsolete chemicals, among others.

Burning of solid waste (especially certain plastics) => smoke and contaminants in air: Fine irritating particles, carbon monoxide, dioxins & other

Fauna in and around dumpsites impacted by direct consumption of waste, or by emissions

Contamination of surface and groundwater from untreated leachate

uPOPs from Emissions of disposal site

- Dioxins and furans (PCDDs and PCDFs) persistent nonbiodegradable organic compounds produced though uncontrolled burning of waste.
- Produced unintentionally trigger biological response in humans that results in neurological, immunologic and reproductive problems.
- These have been also considered responsible for respiratory disorders and elevated cancer risks.

Hydrogen Sulphide

- A colourless, flammable gas with a characteristic odour of rotten eggs.
- Produced in dumpsites when sulphate- bearing materials (such as gypsum and plasterboard) with high concentrations, are mixed with biodegradable waste.
- At low concentrations, H₂S may result in irritation to the mucous membranes of the eye and respiratory tract.
- Exposure to high concentrations results in depression of the central nervous system, loss of consciousness

Heavy metals and hazardous organic compounds in leachate, air and soil close to disposal site

- Heavy metals can be found in leachate, air and soil produced either from plastic burning or smelting of scrap metals and WEEE (lead, mercury, cadmium and arsenic mainly)
- Cause neurological impairments, anaemia, kidney failure, immunosuppression, gastrointestinal and respiratory irritation, abnormalities of skeletal system, inflammation of liver, cancer of liver
- Volatile organic compounds are also present. Inhaling certain VOCs can lead to eye, nose, and throat irritation, headache, loss of coordination, nausea, and damage to liver, kidney, and central nervous system.

Priority substances in leachate associated with health risks

- Aniline
- Arsenic
- Pentachlorophenol
- Naphthalene
- Polycyclic aromatic hydrocarbons
- Toluene

Is leachate generation a problem?

- Leachate in well run sanitary landfills discharged following treatment in an on-site process, and/or at an off-site sewage works.
- Use of landfill liners very effective in containing leachate and only a tiny amount of leachate might be released via the landfill lining system to land or groundwater
- Continuous monitoring procedures identify leakages
- Leachate releases from modern landfills to surface or groundwater are unlikely to pose a significant risk of adverse effects on health.

(Source: EA (environment Agency), updating the landfill leachate Pollution Inventory Tool. - Technical report, 2003 U.K)

Identifying sources of POPs and UPOPs emissions and Hazardous Waste

- WEEE contains several persistent, bio accumulative and toxic substances such as lead, nickel, chromium, mercury and persistent organic pollutants.
- The open burning of plastic coatings from electric cable and wiring from WEEE releases PCDD/ PCDF, PAHs, Hydrogen chloride, heavy metals, CO, Sulphur dioxide, ash, etc.
- These contaminants usually find their way into the air, water and soil.

Some environmental contaminants and their typical concentrations in WEEE

Contaminant	Relationship with WEEE	Typical WEEE concentration (mg/kg)
Polybrominated diphenyl ethers (PBDEs) polybrominated biphenyls (PBBs)tetrabromobisphenol-A(TBBPA)	Flame retardants	
Polychlorinated biphenyls(PCB)	Condensers, transformers	14
Polychlronated dibenzo –p-dioxins (PCDDs),polychlorinated dibenzofurans(PCDFs)	Product of low-temperature combustion of PVCs and other plastics	
Antimony (Sb)	Flame retardants, plastics (ernst et al.,(2003))	1700
Cadmium (Cd)	batteries, tonners, plastics	180
Chromium (Cr)	data tapes and floppy disks	9900
Nickel (Ni)	batteries	10,300
Mercury (Hg)	Fluorescent lamps, batteries, switches	0.68
Lead (Pb)	Solder (kang and Schoenung, (2005))	2900

(adapted from Brett H. Robinson, e-waste: An assessment of global production and environmental impacts, Science of the Total environment 408 (2009) 183–191)

19

Lead Acid Batteries- Chemical composition

Component	<u>wt %</u>
Lead (alloy) components (grid, poles, etc.)	25-30
Electrode paste (fine particles of lead oxide and lead sulphate	35-45
Sulphuric acid (10-20%)	10-15
Polypropylene	5-8
Other plastics (PVC, PE, etc.)	4-7
Ebonite	1-3
Other Materials (glass etc.)	<0.5

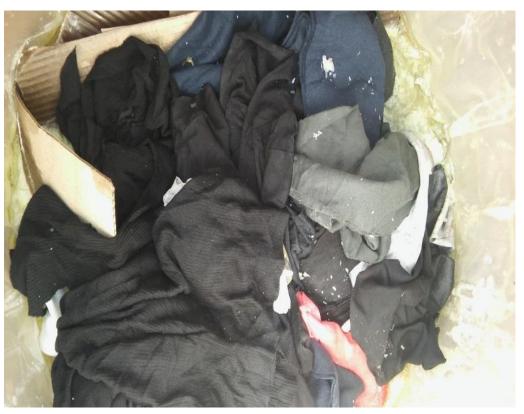
Used Oil

Contain heavy metals such as antimony, chromium , nickel, cadmium, and copper. The presence of copper and chromium are known to catalyse PCDD/PCDF formation.

Pollutant type	Examples	Origin
Polynuclear aromatic hydrocarbons		Petroleum - Base Lubricant
Mononuclear aromatic hydrocarbons	Alkyl benzene	Petroleum - Base Lubricant
Dinuclear aromatic hydrocarbons	Naphthalene	Petroleum - Base Lubricant
Chlorinated Hydrocarbons	Trichloretane	Use of contaminated oil
Metals	Barium Aluminium Zinc Chromium Copper	In additives In Engines

Oil & Fuel Storage Facilities

The most common hazardous wastes at Oil & Fuel Storage facilities are:


- Contaminated absorbent materials
- Sludges from tank cleaning
- Empty contaminated packaging
- Oily waters
- Laboratory Chemicals
- Sludges from ducts cleaning
- Additives etc.

RWA, 2019

Rags / Absorbent Materials/Used PPE

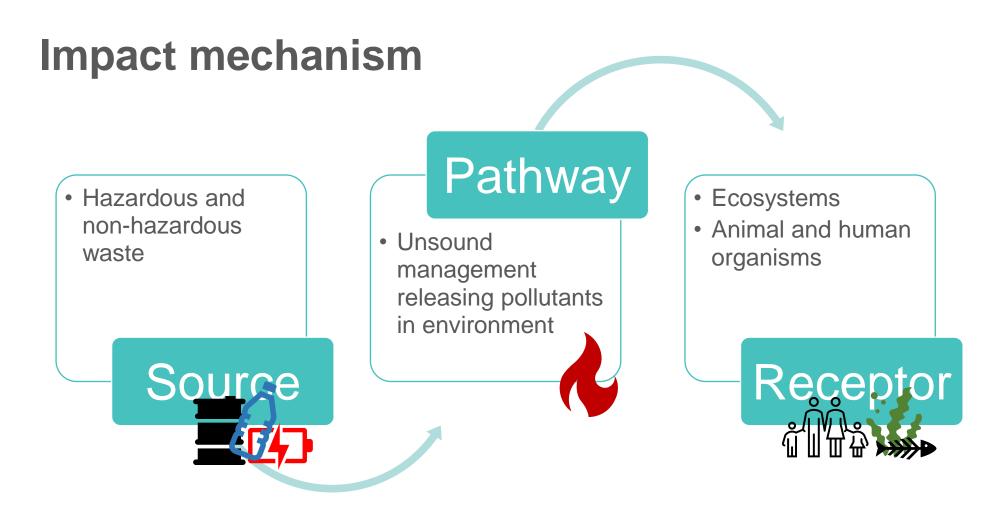
Workshops, Metal Industries, Oil Storage Facilities, Laboratories

RWA, 2019

Laboratories

The most common hazardous wastes in Chemical Laboratories:

- Expired Chemicals
- Aqueous Solutions from Analyses
- Contaminated PPE
- Absorbent Materials / Filters



Medical wastes

- Hazardous due to: physical, chemical, radiological and/or microbiological risks.
- May cause intoxication (acute/chronic exposure) and injuries (cuts and/or punctures, burns)
- Many of the chemicals and pharmaceuticals used in healthcare establishments are hazardous (e.g. toxic, genotoxic, corrosive, flammable, reactive, explosive, shock-sensitive).
- These substances are commonly present in small quantities in medical waste; larger quantities may be found when unwanted or outdated chemicals and pharmaceuticals are disposed of.
- Medical textiles can contain flame retardants or other constituents which release UPOPs when burnt

Soil contamination from tyre fire

- POPs and UPOPs can be prevented from reaching ecosystems and living organisms either through preventing their occurrence or eliminating the pathways through which they reach receptors.
- Sound waste management practices are needed to eliminate this pathway, through waste prevention, source segregation and sound treatment and disposal.